GJTAPI Web Services Bridge
Richard Deadman
Deadman Consulting, http://www.deadman.ca
October, 2003

Overview

The GJTAPI Web Services Bridge is an remote adapter that allows the GJTAPI
framework to be connected to a service provider located on another machine using
web services (aka SOAP or xml-rpc). The GJTAPI framework is an
implementation of JTAPI 1.3 that supports the following packages: core, most of
callcontrol, media, and privatedata. GJTAPI also support Jain Jcc 1.1. GITAPI is
designed as a generic framework supporting multiple telephony fabrics through
the use of plugged in service providers. Service Providers are available for
Dialogic boards, PBX systems, MS Tapi and voice modems to name a few. More
information on GJTAPI can be found at http://gjtapi.sourceforge.net.

Occasionally it is useful for the GJTAPI framework and the “telephony fabric” to
exist on different machines. By acting as a delegate service provider, the Web
Services service provider connects a GJITAPI instance to any server-based
telephony service provider. The document outlines the architecture and how to set
up the system.

Licensing

Unlike other GJTAPI service providers, the web service GITAPI provider is dual-
licensed. It is licenced under both the GPL and a commercial licence. While this
may be confusing, in reality it offers more flexibility than the GPL alone. The
rules are simple:

If you intend to use the GITAPI Web Service bridge in an application that is
released under the GPL, you are free to do so. Unlike software only released under
the GPL, if you are developing a commercial application you also have the ability
to use this GITAPI service provider. If your application falls into the second
category, you must contact Deadman Consulting to acquire a license.

Requirements
1. Java virtual machine of version 1.3 or greater
2. JTAPI 1.1
3. Optionally Jain Jcc 1.1
4. GJTAPI 1.6

GJTAPI Web Services Bridge Page 1 of 5



5. The server must support servlets 1.1
6. The server must support Jax-rpc version 1.1 FCS
7. Gjtapi-rpc.war server-side application file.

8. GjtapiWebService.jar client jar file.

Architecture

Like other remote bridges for GJTAPI, the web services provider contains two
parts, a server-side part that plugs another GJTAPI service provider into it and a
client part that connects the GITAPI “framework” to the server-side service
provider.

A diagram is in order:

GJTAPI Web Services Bridge Page 2 of 5



Typical GJTAPI Architecture:

Client Machine

GJTAPI Architecture with Web Service Bridge:

Client Machine

Server

Basically, the Web Service Bridge is an adapter that delegates GJITAPI service-
provider-interface calls on to a remote GJTAPI service provider. By adherring to
the GJTAPI SPI on both ends, the Web Service Bridge can be injected anywhere
in the GJTAPI application stack to allow access to a service provider on a remote
machine.

GJTAPI provides similar remote bridges for CORBA and RMI, with one
difference: CORBA and RMI are peer-to-peer systems which make it easier for
the “client” to be notified by the “server” of asynchonous telephony events.
SOAP/web services does not allow for callbacks. To get around this, the Web

GJTAPI Web Services Bridge Page 3 of 5



Service Bridge employs a polling architecture where events are cached on the
server for each client and then picked up by a client thread that polls the server
periodically for events.

Both server and client parts can be configured using a properties file that specifies
how they should behave. On the server, this properties file specifies one main
property (ca.deadman.gjtapi.wsAdapter) that names the class used to connect
up to the service provider to delegate GITAPI SPI calls to. As well, this properties
file can contain any properties specific to the service provider selected.

On the client, there is also a properties file that specifies the web service location.
The entries in this file can be overridden in the JTAPI call to
JtapiPeer.getProvider(String). The most interesting property is “server” which
specifies the host name and port that the web service is installed on.

Howto

On the server:

1. Ensure that you have a web service servlet container that supports JAX-RPC
1.1 FCS.

2. Place the JTAPI 1.1 or Jain Jcc 1.1 jar file and GJTAPI 1.6 jar file into the
“shared” jars directory of your web server.

3. Unpack Gjtapi-rpc.war using a zip tool and edit the file
“WEB_INF/classes/ca/deadman/gjtapi/raw/remote/webservices/server.props”.
This file should contain an entry for ca.deadman.gjtapi.wsAdapter that
specifies the class name of the GJTAPI service provider to delegate calls to. By
default this is set to the “Emulator” service provider.

Add any other properties to server.props that are required.
Repack the war file using a zip tool.

Drop the war file into the applications directory of your web server.

N o U e

Use the web servers JAX-RPC management web page to check the proper
deployment.

Now for your client application, to use GJTAPI and the Web Service Bridge:

1. Place JTAPI 1.3 and optionally the Jcc 1.1 jar file onto your application class
path

2. Place the GJTAPI 1.6 and GjtapiWebService jar files onto your application
class path

3. Use the following call in your application to connect to the server-side service
provider:

JtapiPeer peer = JtapiPeerFactory.getJtapiPeer
("net.sourceforge.gjtapi.GenericJtapiPeer");

GJTAPI Web Services Bridge Page 4 of 5



Provider prov = prov = peer.getProvider
("ca.deadman.gjtapi.raw.remote.webservices. WebProvider;server=localhos
t:8080");

This tells GJITAPI to connect to the remote web service “service provider” located
on machine “localhost” at port “8080”.

Further Information

This is meant as a simple introduction to the GITAPI Web Service bridge. For
further information, please use the http://gjtapi.sourceforge.net web site and its
mailing list, or contact Deadman Consulting at http://www.deadman.ca .

© Deadman Consulting, 2003

http://www.deadman.ca

GJTAPI Web Services Bridge Page 5 of 5



